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Abstract

An aircraft, idealised as an elastic beam with supporting system, lands with speed on an aircraft carrier or floating

airport. The floating platform is idealised as a flexible beam floating in an infinite water domain. The water is assumed

incompressible and inviscid. The surface disturbance satisfies a linear free surface wave condition and an undisturbed

condition at infinity. A mathematical model is developed to describe this complex fluid–structure interactive dynamical

system, which exhibits strong coupling between the system’s components. An effective numerical scheme is established

assuming that the two beam-like structures are two solid substructures with motions represented by their respective mode

functions and the infinite fluid domain is modelled by a boundary element scheme. A mixed mode function-boundary

element method is developed to solve the transient dynamics of the system in terms of the time histories of the beam

displacement responses and water pressure. The presented data demonstrates the applicability of the developed

mathematical model and numerical approach and some insights of the complex interactive process exhibited by the system.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Approximately, 70% of the Earth’s surface is covered by ocean. The utilisation of ocean space for
development is of great importance to future advancement. For example, the concept of a floating
airport or runway in coastal waters using a very large floating structure has become attractive during
recent years to ease congestion on land. The typical dimensions of such a platform could be several kilometres
long and only a few metres deep. For such a sheet-like structure, its bending rigidity will be relatively small so
that its elastic deflection becomes a crucial parameter in assessing feasibility and the development of a safe
design.

When designing a floating airport, the naval architect needs to address not only the structure’s response to
ocean waves but also its transient dynamic response due to the impulsive and moving load excited by the
landing and take-off of an aircraft. The development of the mathematical model and the time domain solution
of the complex, interactive dynamical problem necessitates inter-disciplinary studies relating to the aircraft,
floating airport, fluid and their interactions.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Only a limited number of studies on this kind of problem have been reported to date. For example, using a
NASTRAN programme, Watanabe and Utsunomiya [1] presented the numerical results of the elastic
responses of a very large circular floating structure excited by impulsive loading. Transient responses of an
infinite long elastic runway excited by a moving load were investigated by Kim and Webster [2] and Yeung and
Kim [3]. The former studied the added drag caused by the flexibility of the runway whereas the latter focused
on the resonance phenomenon caused by the accumulation of energy near the moving load. Ohmatsu [4]
presented a calculation method based on Fourier transforms, adopting the frequency-domain response
function to analyse the responses of an elastic floating structure influenced by an arbitrary changing load.
Endo and Yago [5] proposed an alternative method using Fourier transforms, in which the time dependent
memory-effect function describing hydrodynamic forces was evaluated from frequency-domain results.
Subsequently the differential equations describing the elastic motions of the floating structure were solved
directly in the time domain by means of a finite element method. Kashiwagi [6] simulated the transient
responses of a floating airport during landing and take-off of a Boeing 747-400 jumbo jet. The time-domain
mode-expansion method used by Kashiwagi [7] was adopted and special attention was paid to study the added
drag during take-off.

However, in all of these studies it was assumed that a prescribed external load is applied to the floating
airport to represent the dynamic process of landing or take-off of an aircraft but no interactions
between the aircraft and the floating airport are considered. Following the preliminary investigations and
numerical results presented by Xing and Jin [8,9], in which the landing of a mass–spring–damper system
on a floating rigid body and a floating elastic beam was considered, respectively, this paper develops
and investigates the mathematical model of an integrated aircraft–floating structure–fluid interaction system
and the numerical scheme to solve its complex dynamic behaviour. To reduce complexity of analysis, the
aircraft and floating airport are idealised as two elastic beams and a two-dimensional (2-D) infinite fluid
domain is assumed. The proposed approach, with suitable modifications, can be extended to tackle a fully
three-dimensional (3-D) problem modelling the interaction of a flexible structure landing on a floating
structure.
2. Governing equations

Fig. 1 schematically illustrates an elastic beam of length L, thickness h and draught d floating on
the calm water surface of a 2-D infinite water domain. It is assumed that an aircraft, idealised by an
elastic beam and a vertical supporting system fixed at its centre, lands and travels on a floating
platform, idealised by the floating flexible beam. The supporting system consists of a linear spring of stiffness
K, original length lK and a damper of damping coefficient C. The 2-D Cartesian coordinate system O�XZ as
shown is fixed in space at point O, which coincides with the mass centre of the floating beam initially. The
O�X axis is horizontal and O�Z axis is vertically upward. The coordinate system o�xz with its axis o�x

parallel to the axis O�X is initially fixed at the mass centre of the landing beam. However, this system is
Fig. 1. A landing beam–floating beam–water interaction system impacted by the landing beam.



ARTICLE IN PRESS
J.Z. Jin, J.T. Xing / Journal of Sound and Vibration 303 (2007) 371–390 373
a moving system with a horizontal velocity equal to the instant horizontal velocity VX of the mass centre of the
landing beam at time t.

The coordinate systems Ō� X̄ Z̄ and ō� x̄z̄ denote two systems fixed in the floating beam and the landing
beam, respectively, such that at initial time t ¼ 0, they coincide with the two systems O�XZ and o�xz,
respectively. Systems Ō� X̄ Z̄ and ō� x̄z̄ are two Lagrangian frames of reference to describe the motions of
the two solid bodies, respectively.

The landing beam lands at point ðX̄ 0; Z̄0Þ on the surface of the floating beam with initial velocities VZ0 and
VX0 in the vertical and horizontal direction at time t ¼ 0 and then travels to a new position ðX̄ C ; Z̄CÞ at time t.
It is assumed that the landing beam is subject to a constant landing resistance FX in the horizontal direction
and therefore it travels with a negative acceleration on the floating beam in the positive direction of O�X axis
until stopping. Obviously, the horizontal velocity VX of the mass centre of the landing beam is not constant
and the moving coordinate system o�xz is a non-inertial system in which the inertial forces of the landing
beam are assessed when dealing with the relative deformation of the landing beam in this moving coordinate
system.

To simplify this problem, we assume that (1) there is no separation between the lower end of the supporting
system and the floating beam during the landing process, (2) the supporting system has sufficient large
horizontal stiffness to remain vertical, (3) there is no initial deformation of the landing beam relative to the
moving coordinate system o�xz, (4) the dynamic displacements of the landing and floating beams are
negligibly small compared to the translation displacement of the mass centre of the landing beam. Therefore,
the contact point between the lower end of the supporting system and the floating beam can be calculated
using only the horizontal equation of motion of the mass centre of the landing beam.

The governing equations describing the dynamics of this landing beam–floating beam–water interaction
system are as follows.
2.1. Fluid domain

As shown in Fig. 1, a 2-D domain Of is occupied by the water of mass density r, which is
assumed incompressible and inviscid with its motion irrotational. Gb;G1;Gf and S denote the sea bed, a
suitable far field, the free surface and the wetted interaction boundaries of the water domain Of, respectively.
The velocity potential f(X, Z, t) of the fluid satisfies the following equations defined under the fixed
coordinate system O�XZ.

Laplace’s equation:

r2f ¼ 0 in Of . (1)

Linearized pressure–velocity potential relation:

p̄ ¼ �rqf=qt� rgZ, (2)

where p̄ represents the water pressure and g denotes gravitational acceleration.
Boundary conditions:

q2f=qt2 þ gqf=qZ ¼ 0 on Gf , (3)

qf=qZ ¼ 0 on Gb, (4)

qf=qX ¼ 0 on G1. (5)

2.2. Landing beam

The motion of the landing beam is governed by the following two equations: one describes its small elastic/
rigid motions relative to the moving coordinate system o�xz and the other describes the large horizontal
motion of its mass centre in the fixed coordinate system O�XZ.
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The equation of motion governing the dynamics of the landing beam relative to the moving system o�xz is
represented as

ElI lq
4w=qx̄4 þmlq

2w=qt2 ¼ �F id x̄� x̄Cð Þ �mlg, (6)

where

d x̄� x̄Cð Þ ¼
0; x̄ax̄C ;

1; x̄ ¼ x̄C :

(
(7)

Here d() is the Dirac delta function. Also, ElIl, ml denote the bending stiffness, mass per unit length of the
landing beam, respectively. w x̄; tð Þ represents the vertical deflection of the landing beam in the o�xz

coordinate system, x̄C defines the coordinate of the mass centre of the landing beam and Fi describes the
interaction force between the two beams which will be discussed later.

The boundary conditions applicable at the free ends of the landing beam are

q2w=qx̄2 ¼ 0; q3w=qx̄3 ¼ 0, (8)

which confirm the vanishing of bending moment and shearing force at the free ends of the beam.
The equation of the horizontal translation of the mass centre of the landing beam relative to the fixed

coordinate system O�XZ is represented as

FX ¼ ðmllÞaX ; V X ¼ aX tþ V X0; X̄ C ¼ aX t2=2þ VX0tþ X̄ 0, (9)

where l is the length of the landing beam and aX describes the horizontal acceleration of the mass centre of the
landing beam relative to the system O�XZ.

2.3. Floating beam

The motion of the floating beam relative to the fixed coordinate system O�XZ is governed by the dynamic
equation:

Ef If q
4W=qX̄

4
þmf q

2W=qt2 ¼ ~pþ F id X̄ � X̄ C

� �
�mf g. (10)

Here, EfIf, mf represent the bending stiffness and mass per unit length of the floating beam, respectively.
W X̄ ; t
� �

denotes the vertical deflection of the floating beam and ~p describes the traction force on the wet
interface of the floating beam. Again, the appropriate boundary conditions at the free ends of the floating
beam are

q2W=qX̄
2
¼ 0; q3W=qX̄

3
¼ 0. (11)

The interaction force Fi consists of a spring force and a damping force which can be obtained
using the relative displacement and velocity between the two ends of the supporting system. It is
given as

F i ¼ K w x̄C ; tð Þ �W X̄ C ; t
� �� �

þ C qw x̄C ; tð Þ=qt� qW X̄ C ; t
� �

=qt
� �

. (12)
2.4. Fluid– structure interaction interface condition

On the fluid–floating beam interaction interface S, the vertical velocities of both water and
the floating beam are consistent and the traction force acting on the bottom of floating beam
equals the water pressure. Therefore the velocity potential f, the dynamic displacement of the floating
beam W, the traction force ~p on the floating beam and the water pressure p̄ satisfy the following
conditions:

qf=qZ ¼ qW=qt; p̄ ¼ ~p. (13)
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2.5. Initial conditions

At time t ¼ 0, the fluid and floating beam are assumed to be in their stationary equilibrium position. The
mass centre of the landing beam has an initial velocity VZ0 and VX0 in the fixed coordinate system O�XZ but
it is assumed that its relative deformation to the moving system o�xz is neglected. These initial conditions are
expressed as follows:

Fluid:

f ¼ 0; qf=qt ¼ 0. (14)

Floating beam:

W ¼ 0; qW=qt ¼ 0. (15)

Landing beam:

w ¼ 0; qw=qt ¼ VZ0; _ZC ¼ VZ0; _X C ¼ V X0, (16)

where (XC, ZC) denotes the coordinates of the mass centre of the landing beam in the fixed system O�XZ and
an over dot represents a derivative with respect to time t.
3. Mode equations of solid substructures

3.1. Mode functions of a free– free beam

The mode functions of a structure may be obtained by a theoretical, numerical or an experimental
approach. In this paper, the theoretical modes [10] for the bending of a uniform beam with free ends are
adopted and they are given as

f m xð Þ ¼

1=2; m ¼ 1;

1

2

cosh mmx=a
� �

cosh mm

þ
cos mmx=a
� �
cos mm

� �
; m ¼ 3; 5; . . . ;

8><
>:

f m xð Þ ¼

ffiffiffi
3
p

x=2a; m ¼ 2;

1

2

sinh mmx=a
� �

sinh mm

þ
sin mmx=a
� �
sin mm

� �
; m ¼ 4; 6; . . . ;

8>><
>>: ð17Þ

where a is the half-length of beam and mm denote positive real roots of the eigenvalue equation:

tan mm þ tanh mm ¼ 0; m ¼ 3; 5; . . . ;

tan mm � tanh mm ¼ 0; m ¼ 4; 6; . . . :

(
(18)

The orthogonal condition of these mode functions is given by

Z a

�a

f i xð Þf j xð Þdx ¼
0; iaj;

a=2; i ¼ j:

(
(19)

The natural modes of a free–free beam given in Eq. (17) are known as the dry modes, which are different
from the wet modes of the beam–water interaction system as reported by Xing et al. [11]. However, as it is well
known that for a linear beam its all normalised natural modes construct a complete and orthogonal space in
which any motions of the beam in dry case or wet case can be described. Based on this conclusion and the
mode superposition method, the dynamic deflection of the landing and floating beams are expressed in terms
of their dry mode functions to transform their dynamic equations into the corresponding mode equations in
their mode space, respectively, as follows.
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3.2. Mode equation of landing beam

The deflection of landing beam is represented by the form

w x̄; tð Þ ¼ w x̄ð Þq tð Þ, (20)

where the mode vector is wðx̄Þ ¼ ½f l1ðx̄Þ; f l2ðx̄Þ; . . . ; f lMl
ðx̄Þ�, Ml denotes the number of retained modes whereas

qðtÞ ¼ ½q1ðtÞ; q2ðtÞ; . . . ; qMl
ðtÞ�T is an unknown time-dependent coordinate vector.

Substituting Eq. (20) into Eq. (6), multiplying both sides of the modified Eq. (6) by wðx̄ÞT and using the
orthogonal condition as well as the free boundary conditions of the beam, the mode equation for landing
beam is given by

M lð Þ €q tð Þ þ K lð Þq tð Þ ¼ F
lð Þ

i þ F lð Þ
g , (21)

where

M lð Þ ¼

Z l=2

�l=2
wTmlwdx̄ ¼

mll

4
I lð Þ,

K lð Þ ¼

Z l=2

�l=2
w 2ð Þ
� �T

ElI lw
2ð Þ dx̄ ¼

mll

4
K lð Þ,

F
lð Þ

i ¼ �

Z l=2

�l=2
wTFid x̄� x̄Cð Þdx̄,

F lð Þ
g ¼ �

Z l=2

�l=2
wTmlgdx̄ ð22Þ

and I(l) represents the unit matrix of order Ml, K(l) denotes a diagonal matrix of natural frequencies of the
landing beam such that

K lð Þ
¼ diag o2

l

� �
. (23)
3.3. Mode equation of floating beam

The deflection of the floating beam is expressed as

W X̄ ; t
� �

¼ U X̄
� �

Q tð Þ, (24)

where the mode vector is UðX̄ Þ ¼ ½f f 1ðX̄ Þ; f f 2ðX̄ Þ; . . . ; f fMf
ðX̄ Þ�, Mf represents the number of the retained

modes and QðtÞ ¼ ½Q1ðtÞ;Q2ðtÞ; . . . ;QMf
ðtÞ�T is the unknown time-dependent coordinate vector.

The application of the mode transformation as same as to derive Eq. (21) for the landing beam gives the
mode equation of the floating beam as follows:

M fð Þ €Q tð Þ þ K fð ÞQ tð Þ ¼ F
fð Þ

i þ F fð Þ
g þ F

fð Þ
d , (25)

where

M fð Þ ¼

Z L=2

�L=2
UTmf UdX̄ ¼

mf L

4
I fð Þ,

K fð Þ ¼

Z L=2

�L=2
U 2ð Þ
� �T

Ef If U
2ð Þ dX̄ ¼

mf L

4
K fð Þ;

F
fð Þ

i ¼

Z L=2

�L=2
UTFid X̄ � X̄ C

� �
dX̄ ,
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F fð Þ
g ¼ �

Z L=2

�L=2
UTmf gdX̄ ;

F
fð Þ

d ¼

Z L=2

�L=2
UT ~pdX̄ ð26Þ

and I
(f) is the unit matrix of order Mf and K(f) is a diagonal matrix of natural frequencies of the floating beam

such that

K fð Þ
¼ diag o2

f

	 

. (27)

On substituting Eqs. (20) and (24) into Eq. (12), the interaction force Fi between the two beams becomes

Fi ¼ K w x̄Cð Þq tð Þ �U X̄ C

� �
Q tð Þ

� �
þ C w x̄Cð Þ_q tð Þ �U X̄ C

� �
_Q tð Þ

� �
. (28)

Eqs. (21) and (25) can be merged to form the coupled equation in the following matrix form:

M lð Þ 0

0 M fð Þ

" #
€q

€Q

" #
þ

C llð Þ C lfð Þ tð Þ

C flð Þ tð Þ C ffð Þ tð Þ

" #
_q

_Q

" #

þ
K lð Þ þ K llð Þ K lfð Þ tð Þ

K flð Þ tð Þ K fð Þ þ K ffð Þ tð Þ

" #
q

Q

" #
¼

F lð Þ
g

F fð Þ
g þ F

fð Þ
d

2
4

3
5, ð29Þ

where

K llð Þ ¼ wT x̄Cð ÞKw x̄Cð Þ,

K lfð Þ tð Þ ¼ �wT x̄Cð ÞKU X̄ C

� �
,

K flð Þ tð Þ ¼ �UT X̄ C

� �
Kw x̄Cð Þ,

K ffð Þ tð Þ ¼ UT X̄ C

� �
KU X̄ C

� �
,

C llð Þ
¼ wT x̄Cð ÞCw x̄Cð Þ,

C lfð Þ tð Þ ¼ �wT x̄Cð ÞCU X̄ C

� �
,

C flð Þ tð Þ ¼ �UT X̄ C

� �
Cw x̄Cð Þ,

C ffð Þ tð Þ ¼ UT X̄ C

� �
CU X̄ C

� �
. ð30Þ

4. Boundary element equation of the fluid domain

The fundamental solution or Green function G(p, q) of the 2-D infinite fluid domain is defined by the
following equation [12]:

r2G ¼ 2pd p� qð Þ in Of ,

qG

qn
¼ 0 on 1 boundary: ð31Þ

Here,N boundary includes the boundaries at infinity of the 2-D infinite fluid domain and n denotes a unit outer
normal of the N boundary. In this investigation, infinite deep water is considered, which simplifies the analysis by
avoiding boundary element calculations on the sea bed but does not lose the generality of the method because
consideration of finite deep water only introduces an extra boundary element idealisation on the sea bed. Therefore,
the sea bed boundary Gb is also considered at infinity in this analysis. For applications in deriving the boundary
element equation later, the involved boundary conditions satisfied by the Green function are highlighted as

qG

qX
¼ 0 on G1, (32)
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qG

qZ
¼ 0 on Gb, (33)

where p is the field point at coordinate (Xp, Zp) and q is the source point at coordinate (Xq, Zq) in the fluid
domain.

The Green function G(p, q) is given as [12,13]

Gðp; qÞ ¼ ln rpq, (34)

where rpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX p � X qÞ

2
þ ðZp � ZqÞ

2
q

. This function G(p, q) does not satisfy the free surface condition
given in Eq. (3) and the wet interaction interface condition in Eq. (13). However, the function G(p, q)
and the potential f of velocity satisfy the conditions required by the Green’s third identity [12,14]. The Green
function G in Eq. (34) and the potential f of velocity are now substituted into the Green third identity which
gives that

fp ¼
1

2p

Z
l

fq

q ln rpq

qnq

� ln rpq

qfq

qnq

� �
dlq, (35)

where l ¼ Gf þ G1 þ Gb þ S is the boundary of the fluid domain and nq is the unit outer normal vector along
the boundary, fp and fq represent the velocity potentials at the field point p and the source point q,
respectively. Eq. (35) is a generalised equation, which holds for any specified boundary conditions of a
problem. Now, we consider our problem requiring the defined conditions given in Eqs. (3)–(5), (13), (32) and
(33). Substituting these conditions into Eq. (35) and letting the field point p approach the boundary of the fluid
domain, we find that

pfp ¼

Z
Gf

fq

q ln rpq

qnq

þ
1

g
ln rpq

q2fq

qt2

 !
dlq þ

Z
S

fq

q ln rpq

qnq

� ln rpq

qW q

qt

� �
dlq. (36)

In this equation, only free surface and wet interface are involved, which is the result using Eqs. (4), (5), (32)
and (33). It should be mentioned that in numerical simulations, a real infinite boundary cannot be realised. We
choose an outside boundary of the fluid, which is sufficient far from the floating structure as a numerical
‘infinite’ boundary. This approximation can be accepted for this transient dynamic analysis in which the
interested vibration information appears during a very short time period from the aircraft landing starting. At
the end of this short time period, the disturbance of the water cannot reach the chosen numerical ‘infinite’
boundary.

For simplicity, a constant boundary element is used to model the fluid boundary. It is assumed
that the boundaries Gf and S of the fluid domain are divided into 2Nf (each side Nf) and NS constant
elements, respectively. We adopt N̄f and N̄S to denote two sets of the identifying numbers of the
elements on the free surface Gf and fluid–structure interaction interface S, respectively. The velocity
potential of each element is assumed to have a constant value at its centre. For example, the velocity
potential in the jth element is represented by fj(t). Allowing the discretization of Eq. (36), it can be
expressed as

pfi tð Þ ¼
X2NfþNS

j¼1

fj tð Þ

Z
lj

q ln riq

qnq

dlq þ
1

g

X
j2N̄f

€fj tð Þ

Z
lj

ln riq dlq �

Z
S

_W q ln riq dlq;

i ¼ 1; 2; . . . ; 2Nf þNS, ð37Þ

which can be rewritten in the matrix form

G €WþHW ¼ ~G _Q tð Þ. (38)
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The representative elements, denoted by ()ij, of the matrices G, H and ~G are, respectively, given as

Gij ¼

1

g

R
lj
ln riq dlq; j 2 N̄f ;

0 jeN̄f ;

8><
>: i; j ¼ 1; 2; . . . ; 2Nf þNS,

Hij ¼

Z
lj

q ln riq

qnq

dlq � pdij ; i; j ¼ 1; 2; . . . ; 2Nf þNS,

~Gij ¼

Z
S

ln riqf fj dlq; i ¼ 1; 2; . . . ; 2Nf þNS; j ¼ 1; 2; . . . ;Mf , ð39Þ

where

dij ¼
0; iaj;

1; i ¼ j:

(
(40)

The unknown vector W is expressed in terms of W1 on the left free surface, W2 on the fluid–structure
interaction interface and W3 on the right free surface such that

W ¼ WT
1 ;W

T
2 ;W

T
3

� �T
,

W1 ¼ f1 tð Þ;f2 tð Þ; . . . ;fNf
tð Þ

h iT
,

W2 ¼ fNfþ1
tð Þ;fNfþ2

tð Þ; . . . ;fNfþNS
tð Þ

h iT
,

W3 ¼ fNfþNSþ1
tð Þ;fNfþNSþ2

tð Þ; . . . ;f2NfþNS
tð Þ

h iT
. ð41Þ

5. Mixed mode function-boundary element equations

From Eqs. (2), (13) and (26), the force vector of water pressure applied to the floating beam is obtained as

F
fð Þ

d ¼ �Cd _W2 � KdQ tð Þ þ F̄
fð Þ

d , (42)

where a representative element of matrix Cd is calculated by

Cd
ij ¼ r

Z
lj

f fi dl; i ¼ 1; 2; . . . ;Mf ; j 2 N̄S

and matrix Kd and vector F̄
fð Þ

d are given as

Kd ¼
R L=2
�L=2 UTrgUdX̄ ;

F̄
fð Þ

d ¼
R L=2
�L=2 UTrgd dX̄ :

(43)

On substituting Eq. (42) into Eq. (29), we find that

M lð Þ 0

0 M fð Þ

" #
€q

€Q

" #
þ

C llð Þ C lfð Þ tð Þ

C flð Þ tð Þ C ffð Þ tð Þ

" #
_q

_Q

" #

þ
K lð Þ þ K llð Þ K lfð Þ tð Þ

K flð Þ tð Þ K fð Þ þ K ffð Þ tð Þ þ Kd

" #
q

Q

" #
¼

F lð Þ
g

�Cd _W2

2
4

3
5. ð44Þ

Eqs. (38) and (44) provide a set of mixed mode function-boundary element equations to describe the
dynamics of this complex interaction system.
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6. Numerical solution

Because of the time-dependent stiffness and damping matrices in Eq. (44), the problem studied herein
has a strong transient characteristic and a time integration approach has to be adopted. The time
integration equations used in the numerical method are derived in Appendix A. Using these equations given in
Appendix A and starting from the initial conditions given in Eqs. (14)–(16), we can complete the time
integration of the mixed mode function-boundary element equations modelling the airplane–floating
structure–water interaction system subject to airplane landing impacts.

Assume that the values of the required variables at time t�Dt have been obtained, for example t�Dt ¼ 0
representing the initial time at which the initial conditions are prescribed, Fig. 2 shows a flow chart to integrate
the numerical equations derived in Appendix A to obtain the values of all required variables at time t.
Following completing all calculations for time step t, the calculation can go to the next time step for time
t+Dt. This calculation process shown in Fig. 2 continues until reaching the final time interested in the analysis
of the problem.
Fig. 2. Flow chart of time integration process.
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7. Numerical results

7.1. A simulation for a car running test

To validate the mixed mode function-boundary element method presented herein, a numerical simulation of
a car running test conducted by Endo and Yago [5] is implemented.

In Endo and Yago’s test, a small carriage of mass 6.91 kg was towed on the rail of a plate model shown in
Fig. 3. The plate whose geometrical and physical data are listed in Table 1, floated on the free surface of a
towing tank of length 40m, width 27.5m and water depth 1.9m. The rail is shifted 0.18m from the centreline
of the plate. The carriage moved with a constant towing velocity 0.61m/s along the positive direction of O�X

axis. The vertical displacements at five points Z1, Z3, Z5, Z7, Z9 along the centerline of the plate model were
measured.

To simulate this test using the developed model of landing beam–floating beam–water interaction system, the
landing beam is assumed to have a very large bending stiffness ElIl ¼ 2� 1010Nm2, a mass density
ml ¼ 6.91 kg/m and length l ¼ 1m, which approximately provides a rigid body of total mass 6.91 kg like the
carriage used in the test. The supporting system is reduced to an extremely strong spring of K ¼ 2.0� 1010N/m
and C ¼ 0Ns/m. The landing beam has a zero vertical landing velocity but only a constant horizontal velocity
VX0 ¼ 0.61m/s same as the towing velocity in the experiment. As the very large water depth-plate draught
ratio 1.9/0.0163 ¼ 116 in the experiment, the water depth is assumed to be infinite in the numerical simulation.
The fluid surface area in the numerical simulation is a rectangular of length 50� 9.75m, width 1.95m and its
centre at point O.

In the numerical calculation, the involved fluid boundaries are divided into 2040 constant elements of
NS ¼ 40 elements on the wet interface and 2Nf ¼ 2000 elements on the free surface. The numbers of modes
retained for the two elastic beams are both 16. The time increment step Dt ¼ 0.012 is used to integrate Eq. (44)
from the beginning time t ¼ 0 to the final time t ¼ 12 s.

The time histories of the vertical displacements measured at the five points Z1, Z3, Z5, Z7, Z9 are depicted
in Fig. 4. The mean value of the numerical time histories shows a good agreement with the experimental data
[5]. This demonstrates the validity of the mathematical model and numerical scheme developed in this paper.
It has been observed that there is a high-frequency oscillation component on the numerical curves (solid lines)
and a large initial displacement discrepancy at point Z7. This is due to the different initial conditions of the
experiment and the numerical simulation. In the experiment, the carriage was placed on the floating plate
model before the experiment started so the floating plate model and the carriage were in their initial static
equilibrium state. However, in the numerical simulation, the landing beam with a zero vertical velocity lands
on the floating beam at the initial time. The landing beam behaves a suddenly added mass onto the floating
beam, which causes an initial dynamic deflection of the floating beam. This dynamic deflection is twice large as
X

Y

car rail
O

Fig. 3. Arrangements of displacement measure points and car moving rail on the model.

Table 1

Particulars of the floating plate model

Length (L)�breadth (B)� thickness (h) 9.75� 1.95� 0.0545m

Draft (d) 0.0163m

Bending rigidity (EfIf) 17.53 kNm2
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the one produced by the static carriage in the test, which produces the oscillation. Due to neglecting the
damping of structures and water in the numerical simulation, the oscillation caused by the initial impact does
not decrease with the time going.

7.2. An example simulating aircraft landing impacts

In this numerical example, the following geometrical and physical parameters are used.
Landing beam: ElIl ¼ 2� 102Nm2, ml ¼ 20 kg/m, l ¼ 1m, VZ0 ¼ �0.1m/s, VX0 ¼ 2m/s, aX ¼ �0.4m/s2,

X̄ 0 ¼ �2:5m; Z̄0 ¼ 0:15m, Ml ¼ 16.
Floating beam: ElIl ¼ 2� 103Nm2, ml ¼ 50 kg/m, L ¼ 15m, h ¼ 0.1m, d ¼ 0.05m, Mf ¼ 16.
Support system: K ¼ 2.0� 104N/m, C ¼ 1.0� 104N s/m, lK ¼ 0.1m.
Fluid: r ¼ 1� 103 kg/m3, Nf ¼ 1000, NS ¼ 40.
Other input data: g ¼ 9.8m/s2, Dt ¼ 0.005 s, a ¼ 0.25, d ¼ 0.5.
To represent the dynamic responses obtained in non-dimensional forms, the reference length d, pressure

p0 ¼ rgd, resultant force F0 ¼ rgdl and moment T0 ¼ F0d are chosen. The simulation results obtained in
association with some physical explanation to confirm its rationality are shown as follows.

(1) Fig. 5 shows the distribution of the non-dimensional dynamic position W/d and water pressure pd/p0
along the floating beam at times t ¼ 1, 2, 3, 4, 5 s. The dynamic position W/d of the floating beam at different
time instant always indicates a minimum value around the transient position of the landing beam, which in
turn corresponds to a maximum water pressure value. The dynamic position of the floating beam shows a
more flat distribution than that of the water pressure, which is significantly influenced by the bending stiffness
EfIf of the floating beam and seems not sensitive to other parameters. In Fig. 6, the distribution of the water
pressure pd/p0 along the floating beam at t ¼ 3 s with different EfIf values is presented. Less wave profiles are
observed in the distribution of the water pressure pd/p0 with higher EfIf value.

(2) Fig. 7 gives the time histories of the non-dimensional dynamic position W/d and water pressure pd/p0 at
the middle point of the floating beam. It is found that the dynamic position W/d of the middle point of the
floating beam increases until to its maximum value at around 0.6 s and then reduces to its minimum value at
around 1.46 s while the landing beam passes the middle point. After this, it gradually tends to its static
equilibrium position. The increase phenomenon of the dynamic position W/d of the middle point of the
floating beam before around 0.6 s is caused by the elastic deformation of the beam. This can be understood as
follows. Assume that the floating beam is rigid. The initial landing impact force produces a down translation
of its middle point (mass centre) and a rotation of the beam about the middle point. Therefore, the position of
the middle point of the assumed rigid beam can only be down. Now, due to the elasticity effect of the floating
beam, an elastic deformation of the beam caused by the landing impact force is added into the rigid motion.
As a result of this, the position of any point of the beam depends on the summation result of the rigid motion
and the elastic deformation of the beam. Fig. 8 shows the distribution of the non-dimensional dynamic
position of the floating beam W/d at the selected time step before 1 s. It is observed that the middle point of the
floating beam reaches its maximum position at around 0.6 s.

The initial large fluctuation of the water pressure pd/p0 at the middle point of the floating beam is a result of
the initial impact of the landing beam. After the third second (600 time step), the fluctuation of the water
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pressure becomes relatively stable with an approximate oscillation frequency 2.5Hz. This frequency is closely
related to the motion of the floating beam on the water. With FEA software ANSYS, considering only the
hydrostatic force the first-order natural frequency of the floating beam on the water is obtained as 2.19Hz.
The difference between these two frequencies may be due to the fluid–structure coupling effect.
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Fig. 9 indicates that the oscillation frequency of the water pressure pd/p0 at the middle point of the floating
beam increases with the increase of the bending stiffness EfIf of the floating beam. The effect of spring stiffness
K and damping coefficient C of the supporting system on the time history of pd/p0 is presented in Figs. 10
and 11, which seems less pronounced than that of the bending stiffness EfIf . With the increase of K or C, a
high-frequency component seems to be added to the time history of pd/p0 especially around the time instant
(at 292 time step) when the landing beam passing the middle point of the floating beam. This effect becomes
much less significant after the landing beam passes by.

(3) Fig. 12 indicates the time histories of the non-dimensional resultant force of water pressure Fd/F0 and its
moment Td/T0 about the middle point of floating beam. It is found the resultant force Fd/F0 shows a damping
oscillation with a relatively stable frequency 7Hz over the 5 s period. This frequency is larger than the first-
order natural frequency 4.31Hz of the landing system fixed at the end of the supporting system. If the
parameters of the landing system are changed, the stable frequency of the resultant force Fd/F0 has been found
a corresponding change. This demonstrates that the stable frequency of the resultant force Fd/F0 is strongly
related to the landing system. Some examples are shown in Figs. 13–16. The moment Td/T0 has the same
frequency as the resultant force Fd/F0 and it always resists the moment produced by the landing and
translation of the landing beam.
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Figs. 13–16 show the time history of the resultant force Fd/F0 with different ml, ElIl, K, C of the landing
beam, respectively. The frequency of the resultant force Fd/F0 decreases with the increase of mass per unit
length ml and increases with the increase of the bending stiffness ElIl. This frequency shows no change for
different spring stiffness K or damping coefficient C. However, a high frequency component is observed with
increasing K or C.

(4) Fig. 17 presents the distribution of the non-dimensional dynamic position Z/d of the landing beam at
times t ¼ 1, 2, 3, 4, 5 s. Figs. 18 and 19 give time histories of the non-dimensional dynamic position Z/d at the
middle point of the landing beam and the non-dimensional dynamic force Fi/F0 provided by the supporting
system. The landing beam shows a relatively stable configuration, which is dominated by its gravity. The
dynamic position Z/d of the middle point of the landing beam decreases to the minimum value at around
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t ¼ 1.5 s and then increases to its equilibrium value. The dynamic force Fi/F0 provided by the supporting
system indicates a damping oscillation with the same frequency but different amplitude of the resultant
force Fd/F0.

8. Conclusions

A mixed mode function-boundary element method has been proposed to numerically solve the dynamic
responses of a landing beam–floating beam–water interaction system excited by the landing beam. The two
beams are considered as two solid substructures of which the motions are represented by their mode functions
and the water domain is modelled by a boundary element method. The coupled fluid–structure motion
equation is solved with the Newmark assumptions.

The responses of this landing beam–floating beam–water interaction system are obtained from the
numerical calculations. The dynamic position and the hydrodynamic pressure distribution along the floating
beam at different time instant clearly indicate the travelling effect of the landing beam; the large initial values
of the hydrodynamic pressure, the resultant hydrodynamic force and its moment illustrate the effect of the
landing impact. The distribution of the hydrodynamic pressure along the floating beam at each time instant is
sensitive to the bending stiffness of the floating beam; the stable frequency of the hydrodynamic pressure at the
middle point of the floating beam is related to the motion of the floating beam on the water; the frequency of
the resultant hydrodynamic force is related to the landing system.

The numerical results illustrate the rationality and feasibility of the mathematical model and numerical
formulations derived in this paper. The proposed mixed mode function-boundary element method is proved to
be a practical technique to solve a real aircraft–floating structure–water interaction system excited by aircraft
landing impacts.
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Appendix A

As observed in Eqs. (38) and (44), the fluid–structure interaction equations are coupled through the first
order time derivatives _W2 and _Q. To solve these coupled equations, we intend to express _W2 as a function of _Q
and other obtained values at the previous time step. The Newmark’s formulation [15] provides a bridge to

realise our aim. Using Newmark’s formulation, the velocity potential WðtÞ and its first-order derivative _W
ðtÞ

with respect to time are expressed as

_W
ðtÞ
¼ _W

ðt�DtÞ
þ ½ð1� dÞ €W

ðt�DtÞ
þ d €W

ðtÞ
�Dt, (A.1)

WðtÞ ¼ Wðt�DtÞ
þ _W

ðt�DtÞ
Dtþ 1

2
� a

� �
€W
ðt�DtÞ

þ a €W
ðtÞ

h i
Dt2, (A.2)
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where a and d are two Newmark parameters and Dt denotes time step. From these two formulations (A.1) and
(A.2), WðtÞ and €W

ðtÞ
are obtained as

WðtÞ ¼ a1
_W
ðtÞ
þWðt�DtÞ

þ a2
_W
ðt�DtÞ

þ a3
€W
ðt�DtÞ

, (A.3)

€W
ðtÞ
¼ a4½ _W

ðtÞ
� _W

ðt�DtÞ
� þ a5

€W
ðt�DtÞ

, (A.4)

where a1 ¼ aDt/d, a2 ¼ (1�a/d)Dt, a3 ¼ (1/2�a/d)Dt2, a4 ¼ 1/dDt, a5 ¼ 1�1/d.
The substitution of Eqs. (A.3) and (A.4) into Eq. (38) yields an equation

_W
ðtÞ
¼ C _Q tð Þ þ AWðt�DtÞ

þ B _W
ðt�DtÞ

þD €W
ðt�DtÞ

, (A.5)

where the coefficient matrices are defined as

A ¼ �EH; B ¼ E½a4G� a2H�; C ¼ E ~G,

D ¼ �E½a5Gþ a3H�; E ¼ ½a4Gþ a1H�
�1. ðA:6Þ

Following the definition in Eq. (41), Eq. (A.5) is rewritten as

_W
ðtÞ

1

_W
ðtÞ

2

_W
ðtÞ

3

2
6664

3
7775 ¼

C1

C2

C3

2
64

3
75 _Q tð Þ þ

A1

A2

A3

2
64

3
75Wðt�DtÞ

þ

B1

B2

B3

2
64

3
75 _Wðt�DtÞ

þ

D1

D2

D3

2
64

3
75 €Wðt�DtÞ

(A.7)

from which it follows that

_W
ðtÞ

2 ¼ C2
_Q tð Þ þ A2W

ðt�DtÞ
þ B2

_W
ðt�DtÞ

þD2
€W
ðt�DtÞ

. (A.8)

The substitution of Eq. (A.8) into Eq. (44) produces

M ðtÞ 0

0 Mðf Þ

" #
€qðtÞ

€QðtÞ

" #
þ

C llð Þ C lfð Þ tð Þ

C flð Þ tð Þ C ffð Þ tð Þ þ CdC2

" #
_qðtÞ

_QðtÞ

" #

þ
K lð Þ þ K llð Þ K lfð Þ tð Þ

K flð Þ tð Þ K fð Þ þ K ffð Þ tð Þ þ Kd

" #
qðtÞ

QðtÞ

" #

¼

F lð Þ
g

�Cd A2W
ðt�DtÞ

þ B2
_W
ðt�DtÞ

þD2
€W
ðt�DtÞ

	 

2
64

3
75. ðA:9Þ

In this equation, there is a non-symmetrical term CdC2 caused by fluid–structure interaction. Therefore, the
traditional Newark solution procedure based on symmetrical matrices is not applicable. As an approximation
in engineering analysis, the non-symmetrical term CdC2

_Q tð Þ may be moved to the right hand side of Eq. (A.9)
and its values at time t is approximately replaced by the value at the previous time step t�Dt. This
approximation avoids solving a large non-symmetrical matrix equation but not losing necessary accuracy
accepted in engineering [16]. However, for the simple example investigated in this paper, the non-symmetrical
Eq. (A.9) is directly solved without the discussed approximate treatment. For this end, using Newmark’s
formulation again, we express the generalised acceleration €qðtÞ; €QðtÞ and velocity _qðtÞ; _QðtÞ in the forms

€qðtÞ
€QðtÞ

" #
¼ a6

qðtÞ

QðtÞ

" #
�

qðt� DtÞ

Qðt� DtÞ

" # !
� a7

_qðt� DtÞ

_Qðt� DtÞ

" #
� a8

€qðt� DtÞ

€Qðt� DtÞ

" #
, (A.10)

_qðtÞ
_QðtÞ

" #
¼ a9

qðtÞ

QðtÞ

" #
�

qðt� DtÞ

Qðt� DtÞ

" # !
� a10

_qðt� DtÞ

_Qðt� DtÞ

" #
� a11

€qðt� DtÞ

€Qðt� DtÞ

" #
, (A.11)
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where a6 ¼ 1=aDt2; a7 ¼ 1=aDt; a8 ¼ ð1=2aÞ � 1; a9 ¼ d=aDt; a10 ¼ ðd=aÞ � 1 and a11 ¼ Dt=2ððd=aÞ � 2Þ.
Substituting Eqs. (A.10) and (A.11) into Eq. (A.9), we obtain a time integration equation:

~Kþ a6
~Mþ a9

~C
� � q tð Þ

Q tð Þ

" #
¼ R t�Dtð Þ þ R t�Dtð Þ

a þ R t�Dtð Þ
v , (A.12)

where

~K ¼
K lð Þ þ K llð Þ K lfð Þ tð Þ

K flð Þ tð Þ K fð Þ þ K ffð Þ tð Þ þ Kd

" #
, (A.13)

~M ¼
M lð Þ 0

0 M fð Þ

" #
, (A.14)

~C ¼
C llð Þ C lfð Þ tð Þ

C flð Þ tð Þ C ffð Þ tð Þ þ CdC2

" #
, (A.15)

Rðt�DtÞ ¼

F lð Þ
g

�Cd A2W
ðt�DtÞ

þ B2
_W
ðt�DtÞ

þD2
€W
ðt�DtÞ

	 

2
4

3
5, (A.16)

R t�Dtð Þ
a ¼ ~M a6

q

Q

" # t�Dtð Þ

þ a7

_q
_Q

" # t�Dtð Þ

þ a8

€q
€Q

" # t�Dtð Þ
8<
:

9=
;, (A.17)

R t�Dtð Þ
v ¼ ~C a9

q

Q

" # t�Dtð Þ

þ a10

_q
_Q

" # t�Dtð Þ

þ a11

€q
€Q

" # t�Dtð Þ
8<
:

9=
;. (A.18)

Eqs. (A.5), (A.8) and (A.12) construct a set of time integration equations to solve the mixed mode function-
boundary element equations describing this complex transient dynamic system.
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